If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x=7.75
We move all terms to the left:
x^2+x-(7.75)=0
We add all the numbers together, and all the variables
x^2+x-7.75=0
a = 1; b = 1; c = -7.75;
Δ = b2-4ac
Δ = 12-4·1·(-7.75)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-4\sqrt{2}}{2*1}=\frac{-1-4\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+4\sqrt{2}}{2*1}=\frac{-1+4\sqrt{2}}{2} $
| 72=4(h+11) | | 5b-6=-7 | | 9+3z=63 | | 0.3=0.5f-0.77 | | b5-6=-7 | | 8c=-21=-77 | | 10=w÷3 | | 0.25x^2+0.65x-1.67=0 | | 22-m=13 | | (7-4x)=23 | | z/4−4=2 | | 4+5y-10=0 | | -45=5x+5 | | 7w=12w+35 | | 5s+6=76 | | −8−x=10−4x | | 25^2x+3=125^x-1 | | 50+15x=380 | | d/5-15=45 | | 30+x+2x=96 | | 14x+4=20x-5 | | g/2+17=27 | | 3n+12,2/5=49 | | (3x)°+18°=180°=x | | 4w-7=29 | | (3x)°+18°=180°= | | 0.5y+0.5y+(y-9)+(y-9)=360 | | 3n+122/5=9 | | 4x)°+42°=90°;x= | | 3(t+2)=49 | | –3(k+24)=69 | | 3/4x+56=7/8x-2 |